
Recursive 
Algorithms
CS 251 - Data Structures 

and Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
A refresher
Recursive Algorithms

Proof of Correctness
Show your algorithm is correct 
without running it

Recursive Runtimes
How do we deal with them?

01

02

03



Recursive Algorithms

01
A refresher

4



Recursive 
Algorithms

● A recursive algorithm solves a 
problem by calling a copy of itself 
to work on a smaller problem.

● A call to itself is known as a 
recursion step.

● Eventually, the algorithm reaches 
the smallest problem to deal with, 
for which it knows how to solve it.

● The solution to the smallest 
problem is known as the base case.

● We borrow the idea from 
recurrence relations to build 
recursive algorithms.

5



Traditional Recursive Algorithm Examples

algorithm fib(n:ℤ≥0) → ℤ≥0
if n ≤ 1 then

return n
end if
return fib(n-1) + fib(n-2)

end algorithm

algorithm fact(n:ℤ≥0) → ℤ+

if n ≤ 1 then
return 1

end if
return n * fact(n-1)

end algorithm

Factorial Fibonacci

6



Binary Search
(recursive)

algorithm BinarySearch(A:array, X:item, l:ℤ, r:ℤ) → ℤ

if r < l then
return -1

end if

m ← (l + r) / 2

if A[m] = X then
return m

end if

if A[m] > X then 
return BinarySearch(A, X, l, m - 1)

end if

return BinarySearch(A, X, m + 1, r)

end algorithm

7

First call:
let n be the length of A
index ← BinarySearch(A, X, 0, n-1)



Binary Search
(iterative)

algorithm BinarySearch(A:array, X:item) → ℤ

let n be the length of A
l ← 0
r ← n - 1

while l <= r do

m ← (l + r) / 2

if A[m] = X then
return m

end if

if A[m] > X then 
r ← m - 1

else
l ← m + 1

end if
end while

return -1
end algorithm

8



Why binary search 
works?

9



Proof of Correctness

02
Show your algorithm is correct 

without running it

10



Proof of 
Correctness

● A formal and mathematical
demonstration that asserts the 
algorithm's correctness with 
respect to its specification. The 
purpose is to ascertain that the 
algorithm will produce the correct 
output for any valid input, showing 
that it consistently and accurately 
solves the problem it is intended to 
address.

● The proof of correctness ensures 
that the algorithm does not have 
logical errors, and it behaves as 
expected in all possible scenarios.



OK, but How?

Loop invariant

Condition maintained 
through the loops

Induction

Base case, inductive 
case, next case

Contradiction

Assume the algorithm 
is wrong, which leads 
to a contradiction

Assertions

Checkpoints at certain 
points of the algorithm

01

03 04

02

12



Example: Recursive Fibonacci

The Fibonacci sequence is mathematically defined as 
follows:

𝐹 0 = 0
𝐹 1 = 1
𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)

algorithm Fibonacci(n:ℤ≥0) → ℤ≥0

if n ≤ 1 then
return n

end if

return Fibonacci(n-1) + Fibonacci(n-2)

end algorithm

13



Proof of correctness by induction (part 1):

Base Cases:

Case 𝑛 = 0:
When 𝑛 = 0, the algorithm returns 0. This is consistent with the 
definition 𝐹(0) = 0.

Case 𝑛 = 1:
When 𝑛 = 1, the algorithm returns 1. This is consistent with the 
definition 𝐹(1) = 1.

14

algorithm Fibonacci(n:ℤ≥0) → ℤ≥0

if n ≤ 1 then
return n

end if

return Fibonacci(n-1) + Fibonacci(n-2)

end algorithm



Proof of correctness by induction (part 2):

Inductive Step: Assume that the algorithm correctly computes 
the Fibonacci numbers for all values up to some arbitrary 𝑘. That 
is, assume that the algorithm correctly returns 𝐹(𝑖) for all 𝑖 such 
that 0 ≤ 𝑖 ≤ 𝑘. We must show that the algorithm correctly 
computes 𝐹(𝑘 + 1).

According to the Fibonacci sequence definition:
𝐹(𝑘 + 1) = 𝐹(𝑘) + 𝐹(𝑘 − 1)

By our inductive hypothesis, we know that our algorithm correctly 
computes 𝐹(𝑘) and 𝐹(𝑘 − 1) since both 𝑘 and 𝑘 − 1 are less 
than 𝑘 + 1.

When the algorithm is called with argument 𝑘 + 1, it recursively 
calculates:

Fibonacci(𝑘) + Fibonacci(𝑘 − 1)

Given our inductive assumption, this is precisely 𝐹(𝑘) + 𝐹(𝑘 −
1), which matches the definition of 𝐹(𝑘 + 1).

Therefore, by the principle of mathematical induction, our 
recursive algorithm for the Fibonacci sequence is correct.

15

algorithm Fibonacci(n:ℤ≥0) → ℤ≥0

if n ≤ 1 then
return n

end if

return Fibonacci(n-1) + Fibonacci(n-2)

end algorithm



Proof of correctness by loop invariant:
The correctness of Binary Search relies on the invariant that 𝑋, 
the item we are searching for, if it exists, is always within the 
search range defines by 𝑙 and 𝑟. Initially, this range covers the 
entire array. Each recursive step maintains this invariant by 
narrowing down the range.

Initialization: At the start, 𝑙 = 0 and 𝑟 = 𝑛 − 1, where 𝑛 is the 
length of the array, ensuring the entire array is being considered.

Maintenance: If 𝑋 is not at the middle index 𝑚, the algorithm 
eliminates half of the search range:
• If 𝐴[𝑚] > 𝑋, then 𝑋, if present, must be in the left half of the 

array. Thus, we set 𝑟 = 𝑚 − 1.
• If 𝐴[𝑚] < 𝑋, then 𝑋, if present, must be in the right half of the 

array. Thus, we set 𝑙 = 𝑚 + 1.
• Correctness of Search: if 𝐴[𝑚] = 𝑋, the algorithm returns 𝑚, 

which is the correct index of 𝑋.

Termination: The loop terminates when 𝑟 < 𝑙, at which point we 
can conclude that 𝑋 is not in the array. If 𝑋 is found earlier, the 
function returns immediately with the index.

16

algorithm BinarySearch(A:array, X:item, l:ℤ, r:ℤ) → ℤ

if r < l then
return -1

end if

m ← (l + r) / 2

if A[m] = X then
return m

end if

if A[m] > X then 
return BinarySearch(A, X, l, m - 1)

end if

return BinarySearch(A, X, m + 1, r)

end algorithm

Example: Recursive 
Binary Search



Idea

Proof of Correctness for Recursive Algorithms Using 
Induction

You can! It will be a combination of induction and invariant.

Prove the invariant holds for the base case(s) and the inductive step(s).

Then, prove the termination of the algorithm for the base case(s) and inductive step(s).

17



Curry-Howard Correspondence

“Mathematical logic and the code of computer programs are, in an exact way, mirror images of each other.”
- Sheon Han. Contributing Writer for Quanta Magazine
The Deep Link Equating Math Proofs and Computer Programs

https://www.quantamagazine.org/the-deep-link-equating-math-proofs-and-computer-programs-20231011/


What about the 
𝑇(𝑛)?

19



Recursive Runtimes

03
How do we deal with them?

20



Iterations (Substitutions)

Idea: iterate the recurrence relation until a pattern for a k-th iteration becomes evident.

Let’s use it to find a closed-form expression for the recursive expression 𝑎𝑛 = 𝑎𝑛−1 + 𝑛 with 𝑎0 = 4.

𝑎𝑛 = 𝑎𝑛−1 + 𝑛
𝑎𝑛 = 𝑎𝑛−2 + 𝑛 − 1 + 𝑛 = 𝑎𝑛−2 + 𝑛 + 𝑛 − 1

𝑎𝑛 = 𝑎𝑛−3 + 𝑛 − 2 + 𝑛 + 𝑛 − 1 = 𝑎𝑛−3 + 𝑛 + 𝑛 − 1 + 𝑛 − 2

…

𝑎𝑛 = 𝑎𝑛−𝑘 +෍

𝑖=0

𝑘−1

𝑛 − 𝑖 = 𝑎𝑛−𝑘 + 𝑛𝑘 −
𝑘 − 1 𝑘

2
= 𝑎𝑛−𝑘 +

1

2
2𝑛𝑘 − 𝑘2 + 𝑘

We reach the base case 𝑎0 when 𝑛 − 𝑘 = 0 → 𝑛 = 𝑘.

𝑎𝑛 = 𝑎𝑛−𝑛 +
1

2
2𝑛2 − 𝑛2 + 𝑛 = 𝑎0 +

1

2
𝑛2 + 𝑛 = 4 +

1

2
𝑛2 + 𝑛

http://discrete.openmathbooks.org/dmoi3/sec_recurrence.html 21

http://discrete.openmathbooks.org/dmoi3/sec_recurrence.html


Closed-form 𝑇(𝑛) for the cost of a 
successful search of 𝑋 in terms of the 
input size 𝑛.

Let 𝑐1 be the cost of the operations run 
by the successful base case, and 𝑐2 be 
the cost of the operations run by the 
recursive case:

𝑇 1 = 𝑐1

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑐2

22

algorithm BinarySearch(A:array, X:item, l:ℤ, r:ℤ) → ℤ

if r < l then
return -1

end if

m ← (l + r) / 2

if A[m] = X then
return m

end if

if A[m] > X then 
return BinarySearch(A, X, l, m - 1)

end if

return BinarySearch(A, X, m + 1, r)

end algorithm



Strategy: Use iterations until there is an identifiable pattern for a k-th recursive call.

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑐2

𝑇(𝑛) = 𝑇
𝑛

4
+ 𝑐2 + 𝑐2 = 𝑇

𝑛

4
+ 2𝑐2

𝑇(𝑛) = 𝑇
𝑛

8
+ 𝑐2 + 2𝑐2 = 𝑇

𝑛

8
+ 3𝑐2

𝑇(𝑛) = 𝑇
𝑛

16
+ 𝑐2 + 3𝑐2 = 𝑇

𝑛

16
+ 4𝑐2

…

𝑇 𝑛 = 𝑇
𝑛

2𝑘
+ 𝑘𝑐2

Last recursive call: 𝑛
2𝑘
= 1 → 𝑛 = 2𝑘 → 𝑘 = log2(𝑛)

𝑇 𝑛 = 𝑇
𝑛

2𝑘
+ 𝑘𝑐2 = 𝑇

𝑛

2log2(𝑛)
+ log2(𝑛) 𝑐2

𝑇 𝑛 = 𝑇 1 + log2 𝑛 𝑐2

𝑇 𝑛 = log2 𝑛 𝑐2 + 𝑐1

23



A Better ThreeSum
Algorithm

Brute Force ThreeSum: A cubic problem!

𝑇(𝑛) =
1

2
𝑛3 −

3

2
𝑛2 + 𝑛

Better approach:
First, sort the numbers
Them, for each pair (A[i], A[j]), call 
BinarySearch(A, -(A[i]+A[j]), j+1, n-1)

Runtime:
Sorting numbers: ≈ 𝑛 log(𝑛) using a decent 
sorting algorithm (e.g., Merge Sort)
Generating pairs: ≈ 𝑛2.
Binary Search: ≈ log2(𝑛) per pair.

𝑇 𝑛 ≈ 𝑛 log 𝑛 + 𝑛2log2(𝑛)

24



Iterations may not work for 
all recurrence relations

25



Example: Recursive Fibonacci

Base steps: 𝑇 0 = 0, 𝑇 1 = 1
Recursive step: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇(𝑛 − 2)

Warning: Solving this 𝑇(𝑛) using iterations is a 
bad idea!

Observations:

𝑇 𝑛 ≤ 𝑇 𝑛 − 1 + 𝑇(𝑛 − 1)

𝑇 𝑛 ≥ 𝑇 𝑛 − 2 + 𝑇(𝑛 − 2)

Let’s use the first observation to find an upper 
bound and the second to find a lower bound.

26

algorithm Fibonacci(n:ℤ≥0) → ℤ≥0

if n ≤ 1 then
return n

end if

return Fibonacci(n-1) + Fibonacci(n-2)

end algorithm



Recursive Fibonacci: Upper Bound

𝑇 𝑛 ≤ 𝑇 𝑛 − 1 + 𝑇 𝑛 − 1 = 2𝑇(𝑛 − 1)

Use iterations to solve the recurrence relation:

𝑇 𝑛 ≤ 2𝑇(𝑛 − 1)
𝑇 𝑛 ≤ 2 2𝑇 𝑛 − 2 = 22𝑇 𝑛 − 2

𝑇 𝑛 ≤ 22 2𝑇 𝑛 − 3 = 23𝑇 𝑛 − 3

…
𝑇 𝑛 ≤ 2𝑘𝑇 𝑛 − 𝑘

Last recursive call when 𝑛 − 𝑘 = 1 → 𝑘 = 𝑛 − 1 (warning: using 𝑇 0 = 0makes everything to be 0).

𝑇 𝑛 ≤ 2𝑛−1𝑇 𝑛 − 𝑛 + 1 = 2𝑛−1𝑇(1) =
1

2
2𝑛

27



Recursive Fibonacci: Lower Bound

𝑇 𝑛 ≥ 𝑇 𝑛 − 2 + 𝑇 𝑛 − 2 = 2𝑇(𝑛 − 2)

Use iterations to solve the recurrence relation:

𝑇 𝑛 ≥ 2𝑇(𝑛 − 2)
𝑇 𝑛 ≥ 2 2𝑇 𝑛 − 4 = 22𝑇 𝑛 − 4

𝑇 𝑛 ≥ 22 2𝑇 𝑛 − 6 = 23𝑇 𝑛 − 6

…
𝑇 𝑛 ≥ 2𝑘𝑇 𝑛 − 2𝑘

Last recursive call when 𝑛 − 2𝑘 = 1 → 𝑘 =
𝑛−1

2
(warning: using 𝑇 0 = 0 makes everything to be 0).

𝑇 𝑛 ≥ 2 Τ(𝑛−1) 2𝑇 𝑛 − 2
𝑛 − 1

2
= 2 Τ(𝑛−1) 2𝑇 1 =

1

2
2
𝑛

28



29



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

Until next time
Do you have any questions?

30

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Recursive Algorithms
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Recursive Algorithms
	Slide 5: Recursive Algorithms
	Slide 6: Traditional Recursive Algorithm Examples 
	Slide 7: Binary Search (recursive)
	Slide 8: Binary Search (iterative)
	Slide 9: Why binary search works?
	Slide 10: Proof of Correctness
	Slide 11: Proof of Correctness
	Slide 12: OK, but How?
	Slide 13: Example: Recursive Fibonacci
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Proof of Correctness for Recursive Algorithms Using Induction
	Slide 18: Curry-Howard Correspondence
	Slide 19: What about the cap T open paren n close paren ?
	Slide 20: Recursive Runtimes
	Slide 21: Iterations (Substitutions)
	Slide 22
	Slide 23
	Slide 24: A Better ThreeSum Algorithm
	Slide 25: Iterations may not work for all recurrence relations
	Slide 26: Example: Recursive Fibonacci
	Slide 27: Recursive Fibonacci: Upper Bound
	Slide 28: Recursive Fibonacci: Lower Bound
	Slide 29
	Slide 30: Until next time

